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ABSTRACT 

 

The need for accurate material models to simulate the deformation, damage and 

failure of polymer matrix composites under impact conditions is becoming critical as 

these materials are gaining increased use in the aerospace and automotive 

communities.  The aerospace community has identified several key capabilities which 

are currently lacking in the available material models in commercial transient dynamic 

finite element codes.  To attempt to improve the predictive capability of composite 

impact simulations, a next generation material model is being developed for 

incorporation within the commercial transient dynamic finite element code LS-

DYNA.  The material model, which incorporates plasticity, damage and failure, 

utilizes experimentally based tabulated input to define the evolution of plasticity and 

damage and the initiation of failure as opposed to specifying discrete input parameters 

such as modulus and strength.  The plasticity portion of the orthotropic, three-

dimensional, macroscopic composite constitutive model is based on an extension of 

the Tsai-Wu composite failure model into a generalized yield function with a non-

associative flow rule.  For the damage model, a strain equivalent formulation is used 

to allow for the uncoupling of the deformation and damage analyses.  For the failure 

model, a tabulated approach is utilized in which a stress or strain based invariant is 

defined as a function of the location of the current stress state in stress space to define 

the initiation of failure.  Failure surfaces can be defined with any arbitrary shape, 

unlike traditional failure models where the mathematical functions used to define the 

failure surface impose a specific shape on the failure surface.  In the current paper, the 

complete development of the failure model is described and the generation of a 

tabulated failure surface for a representative composite material is discussed.  
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INTRODUCTION 

 

     As composite materials are gaining increased use in aircraft components where 

impact resistance is critical (such as the turbine engine fan case), the need for accurate 

material models to simulate the deformation, damage and failure response of polymer 

matrix composites under impact conditions is gaining in importance.  While there are 

several material models currently available within commercial transient dynamic 

codes such as LS-DYNA [1] to analyze the impact response of composites, areas have 

been identified where the predictive capabilities of these models can be improved.  

These limitations have been extensively discussed in Goldberg, et al [2, 3].  Of 

particular relevance to the current study, one major limitation of the currently existing 

models is that the input to these models generally consists of point-wise properties 

(such as the modulus, failure stress or failure strain in a particular coordinate direction) 

that leads to curve fit approximations to the material stress-strain curves and simplified 

approximations to the actual material failure surfaces.  This type of approach either 

leads to models with only a few parameters, which provide a crude approximation at 

best to the actual material response, or to models with many parameters which require 

a large number of complex tests to characterize.  An improved approach is to use 

tabulated data, obtained from well-defined set of straightforward experiments.  Using 

tabulated data allows the actual material response data to be entered in a discretized 

form, which permits a more accurate representation of the actual material response. 

     To begin to address these limitations in the currently existing models, a new 

composite material model incorporating deformation, damage and failure is being 

developed and implemented for use within LS-DYNA.  The material model is meant 

to be a fully generalized model suitable for use with a large number of composite 

architectures (laminated or textile).  The deformation model, described extensively in 

Goldberg, et al [2], is based on extending the commonly used Tsai-Wu composite 

failure model [4] to a strain hardening plasticity model with a non-associative flow 

rule.  For the damage model, described extensively in Goldberg, et al [3], a strain 

equivalent formulation is used in which the deformation and damage calculations can 

be uncoupled.  A significant feature in the developed damage model is that a semi-

coupled approach has been utilized in which a load in a particular coordinate direction 

results in damage (and thus stiffness reduction) in multiple coordinate directions.  This 

semi-coupled approach, while different from the methodology used in many existing 

damage mechanics models [3], has the potential to more accurately reflect the damage 

behavior that actually takes place, particularly for composites with more complex fiber 

architectures. 

     A wide variety of failure models, which mark the end of the stress-strain curve, 

have been developed for composites.  In models such as the Tsai-Wu failure model 

[4], a quadratic function of the macroscopic stresses is defined in which the 

coefficients of the failure function are related to the tensile, compressive and shear 

failure stresses in the various coordinate directions.  This model, while mathematically 

simple and easy to implement numerically, assumes that the composite failure surface 

has an ellipsoidal (in 2D) or ovoid (in 3D) shape.  In reality, composite failure surfaces 

often are not in the form of simple shapes.  More complex models, such as the Hashin 

model [5], also utilize quadratic combinations of the macroscopic failure stresses, but 

utilize only selective terms in the quadratic function in order to link the macroscopic 



stresses to local failure modes such as fiber or matrix failure.  However, an overall 

quadratic form to the failure functions (albeit in a piecewise fashion) are still assumed.  

This approach was extended in models such as those developed by Puck et al. [6], 

Pinho et al. [7] and Maimi et al. [8], in which complex equations were developed to 

predict local failure mechanisms in terms of macroscopic level stresses.  In this 

manner, the failure response and complex failure surfaces present in actual composites 

could be more accurately represented.  However, in these advanced models, very 

complex tests are often required to characterize the model parameters and the 

applicability of the models may be limited to specific composite architectures with 

specific failure mechanisms.  In a combination of approaches, researchers such as 

Mayes and Hansen [9] and Feng [10] utilize an approach where stress (or strain) 

invariants based on macroscopic stresses are used to define the initiation of failure.  

However, different forms of the invariants are used to determine whether fiber-

dominated or matrix-dominated failure occurs.  Given the variety of failure models 

present in the literature, activities such as the World Wide Failure Exercise and its 

multiple iterations (e.g. [11], [12], and [13]) have attempted to conduct a rigorous 

review of which failure model or models provides the optimum prediction of 

composite failure.  In all of these studies, none of the examined models showed a 

complete ability to predict composite failure or displayed a significant advantage 

compared to the other models examined.   

     The difficulty in simulating composite failure can be related to the fact that in 

reality failure is a highly localized phenomenon dependent on various combination of 

fiber, matrix and interface failures.  Due to these complex and interacting local failure 

mechanisms, and the fact that these mechanisms can vary based on the constituent 

materials and fiber architecture, in reality the actual composite failure surface often 

does not conform to a shape that can be easily simulated using a simple mathematical 

function.  Conversely, attempts to utilize discrete functions to analyze the complex 

local mechanisms can result in models with a large number of parameters that require 

a highly complex test program to obtain.  In the methodology described in this paper, 

an approach is used in which the actual experimental three-dimensional failure 

envelope for a composite is entered in a tabulated fashion.  Specifically, a stress or 

strain based invariant leading to the initiation of failure is defined as a function of the 

location of the current stress state in stress space.  In this manner, an arbitrary failure 

surface can be easily defined based on actual experimental data in combination with 

numerical data obtained using any desired existing failure model.  The current 

approach thus serves as a general framework which is not limited to any arbitrarily 

imposed failure surface based on an arbitrarily defined mathematical function. 

     In the following sections of this paper, a brief summary of the deformation and 

damage models are presented.  Details of the failure model are then discussed, 

including the overall methodology along with its application for a representative 

composite material. 

 

 

DEFORMATION MODEL OVERVIEW 
  

A complete description of the deformation model is given in Goldberg et al [2].  A 

summary of the key features of the model is presented here.  In the deformation 

model, a general quadratic three-dimensional orthotropic yield function based on the 



Tsai-Wu failure model is specified as follows, where 1, 2, and 3 refer to the principal 

material directions  
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In the yield function, σij represents the stresses and Fij and Fk are coefficients that 

vary based on the current values of the yield stresses in the various coordinate 

directions.  By allowing the coefficients to vary, the yield surface evolution and 

hardening in each of the material directions can be precisely defined.  The values of 

the normal and shear coefficients can be determined by simplifying the yield function 

for the case of unidirectional tensile and compressive loading in each of the coordinate 

directions along with shear tests in each of the shear directions.  In the above equation, 

the stresses are the current value of the yield stresses in the normal and shear 

directions.  To determine the values of the off-axis coefficients (which are required to 

capture the stress interaction effects), the results from 45° off-axis tests in the various 

coordinate directions can be used.  The values of the off-diagonal terms in the yield 

function can also be modified as required in order to ensure that the yield surface is 

convex [2].   

A non-associative flow rule is used to compute the evolution of the components of 

plastic strain.  The plastic potential for the flow rule is shown below 
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where σij are the current values of the stresses and Hij are independent coefficients, 

which are assumed to remain constant.  The values of the coefficients are computed 

based on average plastic Poisson’s ratios [2]. The plastic potential function in 

Equation (2) is used in a flow law to compute the components of the plastic strain rate, 

where the usual normality hypothesis from classical plasticity [14] is assumed to apply 

and the variable    is a scalar plastic multiplier. 
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Given the flow law, the principal of the equivalence of plastic work [14] can be 

used to determine that the plastic potential function h can be defined as the effective 

stress and the plastic multiplier can be defined as the effective plastic strain rate.   

To compute the current value of the yield stresses needed for the yield function, in 

the developed model tabulated stress-strain curves are used to track the yield stress 

evolution.  The user is required to input twelve stress versus plastic strain curves.  

Specifically, the required curves include uniaxial tension curves in each of the normal 

directions (1,2,3), uniaxial compression curves in each of the normal directions 

(1,2,3), shear stress-strain curves in each of the shear directions (1-2, 2-3 and 3-1), and 

45 degree off-axis tension curves in each of the 1-2, 2-3 and 3-1 planes.  The 45 

degree curves are required in order to properly capture the stress interaction effects.  

By utilizing tabulated stress-strain curves to track the evolution of the deformation 

response, the experimental stress-strain response of the material can be captured 

exactly without any curve fit approximations.  The required stress-strain data can be 

obtained either from actual experimental test results or by appropriate numerical 

experiments utilizing stand-alone codes.  Currently, only static test data is considered.  

Future efforts will involve adding strain rate and temperature dependent effects to the 

computations.  To track the evolution of the deformation response along each of the 

stress-strain curves, the effective plastic strain is chosen to be the tracking parameter.  

Using a numerical procedure based on the radial return method [14] in combination 

with an iterative approach, the effective plastic strain is computed for each time/load 

step.  The stresses for each of the tabulated input curves corresponding to the current 

value of the effective plastic strain are then used to compute the yield function 

coefficients. 

 

DAMAGE MODEL OVERVIEW 

 

The deformation portion of the material model provides the majority of the 

capability of the model to simulate the nonlinear stress-strain response of the 

composite.  However, in order to capture the nonlinear unloading and local softening 

of the stress-strain response often observed in composites [15], a complementary 

damage law is required.  In the damage law formulation, strain equivalence is 

assumed, in which for every time step the total, elastic and plastic strains in the actual 

and effective stress spaces are the same [16].   The utilization of strain equivalence 

permits the plasticity and damage calculations to be uncoupled, as all of the plasticity 

computations can take place in the effective stress space.   

The first step in the development of the damage model is to relate the actual 

stresses to a set of effective stresses by use of a damage tensor M 

 

effMσσ                 (4) 

 

The effective stress rate tensor can be related to the total and plastic strain rate tensors 

by use of the standard elasto-plastic constitutive equation 

 

 peff εεCσ                 (5) 

 



where C is the standard elastic stiffness matrix and the actual total and plastic strain 

rate tensors are used due to the strain equivalence assumption. 

      In order to maintain a one to one relationship between the effective stresses and the 

actual stresses (i.e. to ensure that a uniaxial load in the actual stress space does not 

result in a multi-axial load in the effective stress space), the damage tensor is assumed 

to be diagonal, leading to the following form (assuming the stresses are written in 

vector form). 
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An implication of a diagonal damage tensor is that loading the composite in a 

particular coordinate direction only leads to a stiffness reduction in the direction of the 

load due to the formation of matrix cracks perpendicular to the direction of the load.  

However, as discussed in detail in Goldberg, et al [3], in actual composites, 

particularly those with complex fiber architectures, a load in one coordinate direction 

can lead to stiffness reductions in multiple coordinate directions.  To maintain a 

diagonal damage tensor while still allowing for the damage interaction in at least a 

semi-coupled sense, each term in the diagonal damage matrix should be a function of 

the plastic strains in each of the normal and shear coordinate directions.  Note that 

plastic strains are chosen as the “tracking parameter” due to the fact that, within the 

context of the developed formulation, the material nonlinearity during loading is 

simulated by use of a plasticity based model.  The plastic strains therefore track the 

current state of load and deformation in the material.  

To explain this concept of damage coupling further, assume a load is applied in the 

1 direction to an undamaged specimen.  The undamaged modulus in the 1 direction is 

11E  and the undamaged modulus in the 2 direction is 22E .  The stress-strain response 

of the material is assumed to become nonlinear (represented in the current model by 

the accumulation of plastic strain) and damage is assumed to occur.  The original 

specimen is unloaded and reloaded elastically in the 1 direction.  Due to the damage, 

the reloaded specimen has a reduced modulus in the 1 direction of 11

11

dE .   The reduced 

modulus is a function of the damage induced by the loading and the resulting 

nonlinear deformation in the 1 direction (reflected as plastic strain), where 11

11d  is the 

damage in the 1 direction due to a load in the 1 direction.   Alternatively, if the 

damaged specimen was reloaded elastically in the 2 direction, due to the assumed 

damage coupling resulting from the load in the 1 direction, the reloaded specimen 

would have a reduced modulus in the 2 direction of 11

22

dE .  The reduced modulus is a 

function of the damage induced by the load and resulting nonlinear deformation in the 

1 direction, where 22

11d  is the damage in the 2 direction due to a load in the 1 direction.  



Similar arguments can be made and equations developed for the situation where the 

original specimen is loaded in the 2 direction. 

For the case of multiaxial loading, the semi-coupled formulation needs to account 

for the fact that as the load is applied in a particular coordinate direction, the loads are 

acting on damaged areas due to the loads in the other coordinate directions, and the 

load in a particular direction is just adding to the damaged area.  For example, if one 

loaded the material in the 2 direction first, the reduced modulus in the 1 direction 

would be equal to 22

11

dE .  If one would then subsequently load the material in the 1 

direction, the baseline modulus in the 1 direction would not be equal to the original 

modulus 11E , but instead the reduced modulus 22

11

dE .  Therefore, the loading in the 1 

direction would result in the following further reduction in the modulus in the 1 

direction:   
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These results can be extended to suggest that the relation between the actual stress and 

the effective stress should be based on a multiplicative combination of the damage 

terms as opposed to an additive combination of the damage terms. 

     To properly characterize the damage model in a tabulated fashion, each of the 

damage parameters has to be determined as a function of the plastic strain in a 

particular coordinate direction.  For example, to determine the damage terms for the 

case of loading in the 1 direction, a composite specimen has to be loaded to a certain 

plastic strain level in the 1 direction.  The material is then unloaded to a state of zero 

stress, and then reloaded elastically in each of the coordinate directions to determine 

the reduced modulus of the material in each of the coordinate directions.  This data 

can then be used to determine the values of the damage parameters for a particular 

value of plastic strain.  This process then needs to be repeated for multiple values of 

plastic strain to determine a full tabulated characterization of the damage parameters 

as a function of plastic strain.  

 

 

FAILURE MODEL 

 

     As discussed earlier in this paper, the majority of the available failure models 

utilize mathematical functions to describe the failure surface, which impose a specific 

shape on the failure surface.  An example of this concept can be seen in Figure 1.  In 

this figure, a two-dimensional failure surface in the σ11-σ22 plane for the case of zero 

shear stresses generated using the two-dimensional version of the classical Tsai-Wu 

failure model for a representative AS4/3501-6 polymer matrix composite is shown.  

The properties used to generate the failure surface were taken from Daniel and Ishai 

[4] and are listed in Table 1.  Note that the actual failure surface is continuous but 

slight discontinuities are shown in the presented graphs due to numerical issues in the 

generation of the graph.  As can be seen in the figure, the failure surface is elliptical 

due to the quadratic nature of the equation defining the failure surface.  In reality, 

however, as shown for example in some of the cases discussed by Daniel and Ishai 

[4], the failure surfaces of actual composites often do not exhibit this simple shape.  

Many actual failure surfaces cannot be easily defined by a mathematical function of 



the stresses.  Alternatively, as shown in Figure 1, one potential method of defining the 

points in the failure surface is to use a cylindrical type of coordinate system.  In this 

approach, a variable θ defines the relative location of the point on the failure surface in 

stress space, while a second variable r defines the “magnitude” of the failure surface 

point in the stress space location.  Since the relationship between “r” and “θ” also 

cannot be easily defined by a mathematical function for a realistic composite failure 

surface, a tabulated approach, where a series of “r” and “θ” pairs are explicitly defined 

for a given failure surface, can provide a more accurate representation of the failure 

surface.  Buyak [17] has demonstrated that tabulated approaches can be successful in 

defining complex failure surfaces for advanced materials based on experimental data.  

The tabulated approach allows for the use of experimentally defined failure surface 

data, a failure surface defined using any existing failure model, or a combination of 

experimental and numerically obtained “virtual” data.  The combined approach can 

allow for the case where actual failure data are only available for a portion of the total 

stress space, with “virtual” data being required to fill in the gaps in the failure surface. 

 

Independent and Dependent Variables 

 

As described above, for the tabulated failure surface definition proposed in this 

study appropriate independent and dependent variables need to be defined.  The 

independent variables need to define the location of a point on the failure surface in 

stress space, and the dependent variable needs to define the magnitude of the failure 

surface point along the lines defined by the independent variables.  For the current 

approach, the in-plane and out-of-plane responses will be considered separately.  First, 

the definition of the in-plane failure surface will be discussed.  For the in-plane failure 

surface definition, two independent variables are defined.  The first independent 

variable will be the ratio of the shear stress to the shear failure stress.  For selected 

values of this shear ratio, the location of each defined point on the failure surface in 

stress space is specified by defining the angle of the point in the σ11-σ22 plane, as 

shown in Figure 1, which becomes the second independent variable.  Using simple 

geometric principals, the angle θ for each defined point on the failure surface can be 

defined in terms of the stresses σ11 and σ22 as shown below.  To ensure a set of unique, 

monotonically increasing angles from -180° to 180°, if the stress σ22 is negative the 

computed angle is multiplied by -1 as shown below: 
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For the dependent variable, which is used to define the magnitude of the failure 

surface point given a particular location in stress space, a stress invariant first 

identified by Fleischer [18] is used, defined as follows for the plane stress case: 
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This invariant can be considered to be like a “radius” from the origin to the failure 

surface.  The factor of 2 in front of the shear stress term reflects the symmetry of the 

stress tensor.  Stresses or strains can be used in defining the dependent variable, 

making the model more general.   Using an invariant type of term also allows for the 

stress interactions to be more appropriately accounted for in the failure definition and 

helps to ensure that the failure definition will be accurate for a variety of loading 

conditions.  One difficulty in using a tabulated approach of this type is that for many 

polymer matrix composites the failure surface is highly anisotropic due to the high 

failure strength in the fiber direction and the much lower failure stresses in the 

transverse direction.  If one were to scale the y axis of the graph shown in Figure 1 

such that it was equal to the scale of the x axis, one would observe that the actual 

failure surface is highly elongated.  Due to the significant elongation of the failure 

surface, if one were to plot the radius versus the angle for the failure surface defined 

above, the majority of the points of the failure surface would be clustered at angles 

near -180°, 0°, and 180°.  This clustering would create round-off and interpolation 

difficulties in the numerical implementation of the failure model, making the current 

definition undesirable. 

     To facilitate a more even distribution of the tabulated failure surface points 

along the entire spectrum of angles, the stresses used in the definition of the 

independent variable θ can be scaled.  For the current method, the stresses in the 11-

direction are arbitrarily scaled by the longitudinal tensile failure stress, and the 22-

direction stresses are scaled by the transverse tensile failure stress.  Revised angles are 

then computed using these scaled stresses.  The value of the dependent variable r, 

however, is still computed using the actual unscaled stresses.  A plot of the radius 

versus the angle computed using the scaled stresses is shown in Figure 2.  As can be 

seen in this figure, the points defining the failure surface are fairly evenly distributed 

along the range of angles.  Having evenly distributed points will allow for much 

smoother and more accurate interpolations when used in a numerical implementation. 

 

Modified Center of Failure Surface 

 

As mentioned earlier, for the proposed approach the procedure described above 

needs to be repeated for several ratios of the shear stress to the shear failure stress in 

order to fully define the in-plane failure surface.  As failure surfaces similar to that 

shown in Figure 1 are generated with higher shear stress values, one can observe that 

increasing the shear stresses results in a failure surface with the same shape as the 

surface generated assuming zero shear stresses, but the location of the failure surface 

is shifted somewhat towards the negative stress quadrant of the graph.  At high values 

of shear stresses, the failure surface may not even include the origin.  Even when the 

origin is included, the fact that the failure surface is not centered on the origin may 

cause the angle calculations to be skewed.  If the failure surface does not include the 

origin, the angle calculations would not even be valid as they would not be unique. 

To mitigate this issue, in the current approach the origin of the scaled failure 

surfaces for the selected shear stress ratios are redefined such that they lie in the center 

of the failure surface.  The modified center of each failure surface is then defined 

based on the maximum and minimum scaled stress values in the 11- and 22-directions 

as shown below.  Modified stresses in the 11- and 22-directions are then defined in 

terms of the modified center as shown below: 
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The angle calculations shown in Equation (8) are carried out using the revised stresses.  

The radius calculations are carried out using the original, unscaled and unmodified 

stresses.  An example of the modified, scaled, re-centered failure surface for the case 

of zero shear stresses is shown in Figure 3.  As can be observed in the figure, the 

overall shape of the failure surface does not change from the original case but the 

failure surface is now centered about the modified origin. The radius versus scaled 

angle plot determined using the modified failure surface center is shown in Figure 4.  

As can be seen in the figure, the tabulated points defining the failure surface are more 

evenly distributed compared to the case with the original origin location shown in 

Figure 2. 

 

Algorithm for Implementation of In-Plane Failure Model 

 

To apply the in-plane version of the failure model described above, first the failure 

surface for a given composite needs to be converted into a tabulated form in order to 

establish a benchmark for determining if failure has occurred for a given load 

condition.  The baseline failure surface for a given material can be established based 

on experimental data, any available numerical failure model, or a combination of the 

two.  In the combination approach, experimental data can be used where available, and 

analytically generated data can be used to fill in the required gaps.  Given the baseline 

failure surface data, Equations (8)-(10) are then used to generate a series of “radius” 

versus “angle” plots for various ratios of shear stress to shear failure stress, similar to 

Figure 4.  For use in a numerical algorithm, the data needs to be transformed into a set 

of tables which serve as input to the computer model.  The stress values defining the 

“center” of the failure surface for the selected shear stress ratios also need to be 

defined for use in the calculations. 

     The specific algorithm to implement the failure model is as follows: 

1.) Given: applied load condition σ11, σ22, σ12. 

2.) Compute the shear ratio R = σ12/S. 

3.) Scale the longitudinal and transverse stresses. 

4.) Look up the appropriate modified failure surface center stresses (σ11-center and 

σ22-center) (Equation (4)) corresponding to the current shear ratio R.  Note that 

interpolation of these stresses may be required if the current shear ratio R is not 

explicitly defined in the input tables. 

5.) Compute the modified longitudinal and transverse stresses given the stresses 

defining the modified failure surface center. 

6.) Compute the angle θ associated with the modified longitudinal and transverse 

stresses. 

7.) Compute the radius associated with the unscaled, unmodified applied stresses. 



8.) Compare the radius computed at step 7) to the tabulated radius at failure for the 

given shear ratio R and angle θ.  Note that interpolation of the radius at failure may be 

required if the specific values of R and θ are not specified in the input tables. 

9.) If the radius computed using the applied stresses is equal to or greater than the 

radius at failure, the material is assumed to have failed.  In the numerical 

implementation, the element will either be eroded once failure is deemed to have 

occurred or have all of its stiffness properties reduced to negligible values.  A 

progressive reduction in stresses will not occur. 

 

Algorithm for Implementation of In-Plane Failure Model 

 

The methodology and procedures described above are valid for the case of in-

plane loading and stresses.  For thin composites, particularly under in-plane loading, 

this case is most likely sufficient since the out-of-plane normal and transverse shear 

stresses can be assumed to be negligible.   However, for thicker composites, 

particularly under impact loading conditions, the out-of-plane stresses can often be 

significant and must be included.  One way to account for failure due to out-of-plane 

stresses is to utilize a delamination model, as is discussed in many sources such as 

Barbero [15].  In this case, the in-plane failure model could be used in combination 

with a delamination model to fully define the composite failure.  However, an 

alternative approach would be to define a tabulated failure surface defined by the out-

of-plane stresses that is independent from the failure surface defined by the in-plane 

stresses.    The radius-like dependent variable can then be used to couple the failure 

responses due to the in-plane and out-of-plane stresses. 

The out-of-plane failure surface can be defined in a manner similar to what was 

used to define the in-plane failure surface.  To generate the required out-of-plane 

failure surfaces, a series of two dimensional failure surfaces in the σ13-σ23 plane are 

defined for various ratios of the out-of-plane normal stress σ33 to the out-of-plane 

normal failure stress.  Equations similar to Equations (8) and (10) can then be used to 

define the values of the angle θ (where σ11 in the equations is replaced with σ13 and σ22 

in the equations is replaced with σ23) for the out-of-plane failure surfaces. For the 

dependent variable, a stress invariant radius term similar to Equation (9) is defined: 
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where the transverse shear stresses are multiplied by 2 due to the symmetry of the 

stress tensor.  Plots of the radius versus scaled angle (similar to those shown in Figure 

4) can then be generated for several out-of-plane normal stress ratios based on the out-

of-plane failure stresses and converted into a tabulated set of input for the failure 

model. 

       For the case where both in-plane and out-of-plane stresses are present in a 

material under a specified load state, a method needs to be specified to allow for the 

stress interactions that may take place under the combination of in-plane and out-of-

plane loading.  To account for the stress interaction, ratios dip and a ratio doop are 

defined.  The ratio dip represents the ratio of the radius computed using Equation (9) 

for the applied in-plane stresses to the corresponding radius computed using the in-

plane stresses at failure for a given angle and shear stress ratio.  The ratio doop
 



represents the ratio of the radius computed using Equation (11) for the applied out-of-

plane stresses to the radius at failure for a given out-of-plane angle and out-of-plane 

normal stress ratio.  A weighted sum of the ratios can then be computed using the 

following expression, where n is an arbitrary number defined by the user: 

 

    n n

oop

n

ip ddd              (12) 

 

If the weighted ratio d is greater than or equal to one, failure is assumed to have 

occurred.  If the weighted ratio d is less than one, failure is assumed to have not 

occurred. 

 

CONCLUSIONS 

 

     A generalized composite model suitable for use in polymer composite impact 

simulations has been developed.  The model utilizes a plasticity based deformation 

model obtained by generalizing the Tsai-Wu failure criteria.  A strain equivalent 

damage model has also been developed in which loading the material in a particular 

loading direction can lead to damage in multiple coordinate directions.  A general, 

tabulated failure model has also been formulated.  Within the failure model, a 

methodology has been developed to convert two-dimensional failure surfaces to a 

tabulated format based on the location of the points of the failure surface in stress 

space and a dependent stress invariant variable which defines the magnitude of the 

failure stress points at a given location.  An algorithm to implement the failure model 

has been developed, and a procedure for accounting for a combination of in-plane and 

out-of-plane stresses has been specified. 
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TABLE I. MATERIAL PROPERTIES FOR AS4/3501-6 UNIDIRECTIONAL COMPOSITE 

Property Value 

Longitudinal Modulus E11 (GPa) 147 

Transverse Modulus E22 (GPa) 10.3 

Longitudinal Poisson’s Ratio ν12 0.27 

Transverse Poisson’s Ratio ν23 0.54 

In-Plane Shear Modulus G12 (GPa) 7.0 

Longitudinal Tensile Strength XT (MPa) 2280 

Longitudinal Compressive Strength XC 

(MPa) 

1725 

Transverse Tensile Strength YT (MPa) 57 

Transverse Compressive Strength YC 

(MPa) 

228 

In-Plane Shear Strength S (MPa) 76 

 
 

 
 

Figure 1.  Tsai-Wu failure surface for AS4/3501-6 composite. 

 



 
 

Figure 2.  Plot of radius versus angle for scaled AS4/3501-6 failure surface. 

 

 
 

Figure 3.  Scaled Tsai-Wu failure surface with modified center for AS4/3501-6 composite. 

 



 
 

Figure 4.  Plot of radius versus angle for scaled failure surface with modified center. 

 

 


